本质上看,想拉动业绩增长,要达到两点:
●业绩真的在增长
●所有人认为业绩是我们在拉动增长
标准定好,下边带大家看5个经典例子
1
销售团队效益提升(业务员收入提升)
曾经有一个销售团队提升的项目,目标是提升销售团队业绩。大家知道,和销售部门打交道,最难的不是数据分析过程,而是这帮大爷很难沟通。
做得好的销售总是居功自傲,做得不好的人员素质太差,你跟他讲数据分析丫根本听不懂,也听不进去。那怎么影响他们呢?
对数据分析不感兴趣,对收入感不感兴趣?——从这个角度切入,我设计了一个战术:先找HR拿了销售团队的人员名单和收入情况,然后做了一个分类。先把Top20%的人踢出去,然后只看剩下的弱鸡们。分析的思路,不是如何帮弱鸡们成为Top20%的高手,而是如何帮弱鸡们达到一个小目标:一年6个月以上月薪。
这就像给差生补课,如果一开始就教他如何考分,丫从心理上就抗拒:那些考分的都是怪物,与我何干。但如果一开始教他:你考到60分就不挨打了。他就会很有动力去学习。
分析结果出来,销售部领导们看了两眼直放光。所有人立刻表示分析这个思路好,要立即执行。结果团队平均水平大幅度提升,总业绩自然出来了,更关键的是:所有人都认可这是分析的成绩。
这个例子第一个讲,是因为它体现了两个数据驱动业绩的基本思路:
●从业务部门感兴趣的角度,先引起足够重视
●帮助业务从0做到60,优先解决最大多数的问题
●后续很多案例,都是在这个基础上的延伸和扩展。
2
门店效益提升(大家都来看美女)
曾经有一个门店效益提升的项目,看起来和实例1差不多,但面临的问题不一样。
解决一个人的问题,比解决一个门店的问题要简单。一个业务员只要话术、知识点、行动力到位,怎么着都能及格。
但门店考虑进销存,考虑不同产品布局,考虑因素更复杂。而且,门店总有理由:我们这个店的位置不好,情况很特殊,不能一概而论。还动不动冲着我们咆哮“你开过几年店!”。
怎么办呢?
如果我说不服他,邻居家的孩子能不能说服他呢?——从这个角度切入,我设计了一个战术:先建立一套标准的门店数据考核指标。之后,对每个大区经理下边的门店排名,排出1,2,3以后,如果哪个门店的导购小妹当日业绩大区第一,就直接把小妹的头像在BI里置顶给所有人看,大区经理亲自发红包表示嘉奖。
于是引发了一系列连锁反应:
●先是小妹知道了置顶人人都能看到,就把自己的照片PS得像安吉拉宝贝儿晒出来;
●其次是大家为了看美女,天天都打开BI看报表,解决了报表打开率问题;
●再往后,所有店长都在问:她是怎么做到的?于是查看这个小妹所在门店的产品销售结构,促销参与率,会员到店率等指标。
为了体现是数据分析的作用,我专门把这些数据隐藏起来,做个大按钮:猜猜她咋做。非得让店长们点击才能看,结果这个按钮的点击率从0%迅速增长到70%。大家一致表示这个数据才好用的,简直是业绩增长百宝箱。
这里又有两个数据驱动业绩的基本思路:
●借力打力,利用数据树立标杆,让业务更容易信服。
●使用率是第一指标,有使用率才有重视度,有重视度才能产效益。
实际上失败BI项目,大部分死在这两点。一般的BI系统,每日报表打开率只有10%左右,根本没有被充分用起来。业绩指标好与坏,是数据分析师自己拍脑袋拍出来的,没有和一线情况结合。导致推出一线后根本没人例会,该怎么做怎么做。最后BI沦为一个空架子,业务部门要取数的时候,还是下单跑sql。
3
商品销量提升(背后的秘密)
这个是很常规的,电商提出的提升商品销量的需求,只不过实现目标的方法很鸡贼。接这个项目的时候,推荐系统还没有今天这么多花样。某公司数据部花大力气做了这个功能,却没有实现“啤酒与尿布”一样的效果,急得团团转。
问题就出在啤酒与尿布上!如果真是两个销量好的大品类相互关联,怎么体现是“数据”的作用呢?——回顾一下,我们开头说的定义:既要真的见效,又得让大家认为是数据做的。真找啤酒与尿布这种大品类,费尽力气涨个2%,5%,还要和别人争论这到底是数据做出来的还是自然波动。为啥不找小品类呢?
于是,还是做关联分析,但是我们缩小了商品范畴,找小品类、高毛利的商品;我们也缩小了用户范畴,从存量用户里找潜在用户群体,尽可能一网下去多捞一些用户,让活动声势做大。
小品类日常销售额低,一做活动就能看到效果。而且小品类库存多,即使没有增加额外利润,清库存本身也是大功一件。高毛利意味着补贴力度相对大一些,重赏之下必有勇夫。结果一打一个准,连续清了数个品类的库存,引起领导的
转载请注明地址:http://www.1xbbk.net/jwbzn/2101.html